Image Segmentation with Implicit Color Standardization Using Spatially Constrained Expectation Maximization: Detection of Nuclei

نویسندگان

  • James Monaco
  • J. Hipp
  • D. Lucas
  • S. Smith
  • Ulysses J. Balis
  • Anant Madabhushi
چکیده

Color nonstandardness--the propensity for similar objects to exhibit different color properties across images--poses a significant problem in the computerized analysis of histopathology. Though many papers propose means for improving color constancy, the vast majority assume image formation via reflective light instead of light transmission as in microscopy, and thus are inappropriate for histological analysis. Previously, we presented a novel Bayesian color segmentation algorithm for histological images that is highly robust to color nonstandardness; this algorithm employed the expectation maximization (EM) algorithm to dynamically estimate for each individual image the probability density functions that describe the colors of salient objects. However, our approach, like most EM-based algorithms, ignored important spatial constraints, such as those modeled by Markov random field (MRFs). Addressing this deficiency, we now present spatially-constrained EM (SCEM), a novel approach for incorporating Markov priors into the EM framework. With respect to our segmentation system, we replace EM with SCEM and then assess its improved ability to segment nuclei in H&E stained histopathology. Segmentation performance is evaluated over seven (nearly) identical sections of gastrointestinal tissue stained using different protocols (simulating severe color nonstandardness). Over this dataset, our system identifies nuclear regions with an area under the receiver operator characteristic curve (AUC) of 0.838. If we disregard spatial constraints, the AUC drops to 0.748.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Expectation Maximization for the Segmentation of Cervical Cell Nuclei

As cervical cancer is one of the most common cancers worldwide, screening programs have been established. For that task stained slides of cervical cells are visually assessed under a microscope for dysplastic or malignant cells. To support this challenge, image processing methods offer advantages for objective classification. As the cell nuclei carry a high extent visual information, all depict...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

Lip Posture Estimation using Kinematically Constrained Mixture Models

A novel approach for estimating 3D lip posture from monocular video sequences is presented. The lips are modeled as a four body closed kinematic chain with each body possessing translational, rotational and prismatic (to account for deformations) degrees of freedom. Geometric constraints relating these bodies to each other, and to the face as a whole, are used to constrain the space of possible...

متن کامل

Unsupervised Texture Image Segmentation Using MRFEM Framework

Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 15 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2012